\
A \
PN

/\

A

THE ROYAL A

L

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

y "\ \\\\
A \
y \ \\

/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSé(FZTIONS SOCIETY

PHILOSOPHICAL THE ROYAL

The Clifford Paterson Lecture, 1990: Progress and
Research in the Computer Industry

Maurice V. Wilkes

Phil. Trans. R. Soc. Lond. A 1991 334, 173-184
doi: 10.1098/rsta.1991.0006

i i i Receive free email alerts when new articles cite this article - sign up in
Email alerti ng service the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to:
http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1991 The Royal Society

http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;334/1633/173&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/334/1633/173.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

The Clifford Paterson Lecture, 1990
Progress and research in the computer industry

By MAURIicE V. WILKES
Oliwvetti Research, 24a Trumpington Street, Cambridge CB2 1QA, UK.

The paper surveys the technical progress which has occurred in the computer
industry in the recent past and the way in which the relationship between that
industry and the semiconductor industry has developed. Research in the computer
industry is now dominated by software, a subject which has an intellectual basis
rather than a basis in the experimental sciences. For this reason, the management of
research in the computer industry presents problems of its own.

THE ROYAL
SOCIETY 4

Computers and semiconductors

In 1980 it was far from clear what the future relationship would be between the
semiconductor industry and the computer industry. Microprocessors, which were
then coming into use, were the product of the semiconductor industry and one
extreme view expressed was that that industry might take over the computer
industry altogether. That was not likely to happen and in fact has not happened;
instead an interface, with a firm technological basis, has been put in place and has
enabled the two industries to coexist and cooperate.

Transistors are analogue devices but, if properly designed for the purpose and used
in the proper manner, can behave as binary elements from which gates and flip flops
can be made. The designer provides a set of design rules which lay down permissible
ways in which the transistors may be used in digital circuits. If these rules are
followed, a circuit designer who knows very little about semiconductor physics can
successfully design digital circuits of any degree of complexity. The design rules
constitute an interface between the process engineer and the designer of digital chips,
whether the latter works in the semiconductor industry itself or in the computer
industry.

In many industries computer models have come to play a leading role in the design
process. Nowhere is this trend more marked than in the design of computer
hardware. At one time, the universal practice was for experimental models — known
for historical reasons as breadboards — to be constructed, and for the circuits to be
checked out on a laboratory bench using an oscilloscope. These methods have now
almost entirely given way to methods based on computer modelling.

The circuit is described in a hardware description language or the equivalent, and
put into the computer. The tools used for checking it out are software tools; they
include programs for verifying that the design rules have been followed and
simulators for checking that the logic does what is intended. Other simulators enable
the maximum operating speed to be determined. Similar methods are applicable

PHILOSOPHICAL
TRANSACTIONS
OF

A

A

'am \

A

THE ROYAL
SOCIETY

Phil. Trans. R. Soc. Lond. A (1991) 334, 173-184
Printed in Great Britain 173

PHILOSOPHICAL
TRANSACTIONS
OF

Y
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to ég(z%

Philosophical Transactions: Physical Sciences and Engineering. MIKOIY
WwWw.jstor.org

http://rsta.royalsocietypublishing.org/

,\
A
' . \
ya N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

174 M. V. Wilkes

across the whole range of hardware design, from printed circuit boards and the silicon
chips that go on them to highly complex microprocessor chips.

The fact that simulation enables a reliable estimate to be obtained of the
performance of a given piece of hardware without actually constructing it, and hence
enables alternative configurations to be compared, has done much to improve the
efficiency with which hardware operates. This is particularly true in the case of
processor design, as was demonstrated by the rR1Sc movement for a new approach to
processor design. Far-reaching claims were made for this new approach, namely, that
it would enable processors to be designed that would occupy half as much silicon area
as earlier processors, would take half the time to develop, and would run twice as
fast. These claims were made good in the first instance by showing the results of
simulation. Later, when RISc processors were built, their performance confirmed the
results of the simulation.

CMOS processors

The power of cMos microprocessors has steadily increased as the feature size has
been reduced. It follows from the laws of physics that this results in a linear increase
in speed. It also enables more transistors to be accommodated on a given area of
silicon.

The time required to send a signal from one place to another depends on the
amount of power available to charge the capacitance of the interconnecting wires.
This capacitance is much greater for inter-chip wiring than for on-chip wiring. With
OMOs it is not possible to provide enough power to drive inter-chip wiring at high
speed. There is, therefore, a great premium on putting the whole processor on a single
chip. The point at which this could first be done represented an important stage to
be reached in the development of processors.

Not only have feature sizes decreased, but chip sizes have increased. The total
number of transistors that can be accommodated on a single chip has therefore
increased dramatically. The progress which has taken place in the past five years is
well illustrated by comparing the MIPS R2000 and the Intel i860.

The MIPS R2000 processor was developed in 1986 using 2 pm technology. It is
based on a RISc processor which takes up about half the available space on the silicon.
The remaining half would have been insufficient to accommodate more than a very
small amount of cache memory and instead the designer included the cache control
circuits for off-chip instruction and data caches. This left about one third of the entire
chip available and it was used for a memory management unit (MmMU) with a
translation look aside buffer (tLB). The importance, at that period, of Risc
philosophy in making the processor as small as it was does not need to be emphasized.
A processor of the same power, but of earlier design, would have occupied the entire
chip with no room for anything else.

Three years later when the Intel i860 processor has developed it had become
possible to accommodate on a single chip, not only the units mentioned above, but
also a data cache, an instruction cache, and a highly parallel floating point
coprocessor. The chip itself provided slightly more than twice the silicon area, and
the amount of space taken up by each transistor was less by a factor of 2.5. The result
was an increase in the effective space available by a factor of 5. The basic risc
processor itself then took up only 10% of the whole compared with 50% on the
R2000. The floating point coprocessor took up 35 %, the memory management unit
20 % leaving 35% for cache memory.

Phil. Trans. R. Soc. Lond. A (1991)

http://rsta.royalsocietypublishing.org/

/,//’ \\
o \
(2\

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\
/%

p

THE ROYAL A

a

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Progress and research in the computer industry 175

Although the total effective space on the i860 is only five times that on the R2000,
there are 10 times as many transistors — about a million. This is because much of the
space is used for memory and memory is relatively more dense in transistors than
logic.

The most advanced present-day cmos processors have a feature size of a little less
than 1 pm, and a transistor count of approximately a million. Progress will continue.
oMOos microprocessors have already pushed up to what used to be regarded as the top
end of the minicomputer range; it may be expected that they will soon go well into
the main frame range. There does not seem to be any reason why a feature size of
um should not be reached before the effects of statistical noise make themselves
felt. At some intermediate point, it will be necessary to reduce the operating voltage,
and this will limit somewhat the gain in speed that will be obtainable.

Bipolar processors

Bipolar transistors have followed cmos transistors in becoming smaller, although
there has been a lag. This is mainly because the bipolar process is intrinsically more
complex, but it is also partly because the great success of cmos technology has led
the semiconductor industry to concentrate its resources on it. It takes twice as many
transistors to make a gate in bipolar technology as it does in cmos.

Bipolar transistors are faster than cmos transistors by a factor of perhaps five and
they operate at a higher power level. The penalty that must be paid to send signals
from one chip to another is not therefore as great. This has made it possible to build
very fast multichip processors, using bipolar technology, frequently in the form of
gate arrays. The fastest computers on the market at the present time all use bipolar
processors.

Nevertheless, as bipolar transistors have become intrinsically faster, it has become
necessary to develop interconnect systems that are faster than traditional printed
circuit boards. This is becoming more and more difficult, and bipolar technology is,
in consequence, approaching the point — reached earlier with cmos — when in order to
make further progress it will be necessary to put the whole processor on the same
chip.

A pure bipolar chip, with a million transistors on it, will dissipate at least 50 W,
probably twice as much. Removing the heat presents problems, but these are far
from being insuperable. More severe problems are encountered in supplying the
power to the chip and distributing it without a serious voltage drop or without
incurring unwanted coupling. Design tools to help with these problems are lacking.
There is, however, good hope that they will be overcome and that it will soon be
possible, using custom bipolar technology, to implement a processor similar to the
R2000 on a single chip. Such a processor may be expected to show a spectacular
increase of speed compared with multichip implementations using gate arrays.

The performance of a single chip microprocessor depends to a major extent on the
amount of on-chip memory it contains. As the number of transistors goes up, this
may give an advantage to cMos, since at least four times as many transistors are
needed to implement a memory cell in bipolar technology as in cMos. A cmos chip
containing several million transistors will therefore be likely to have significantly
more on-chip memory that a similar bipolar chip. This advantage, combined with the
benefits of having a simpler process and lower power consumption, may be sufficient
to keep cmos ahead in the race with bipolar technology.

Phil. Trans. R. Soc. Lond. A (1991)

http://rsta.royalsocietypublishing.org/

///’ \\

/\
' . \
ya N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

176 M. V. Wilkes

Many advantages that would result from being able to put cmos transistors and
bipolar transistors on the same chip. Semiconductor companies are devoting much
effort to this area, under the generic name BicMOS. There are two approaches
possible. One is to implement the processor and on-chip memory in cMos and to use
bipolar transistors to drive both off-chip interconnect and long-distance wires on the
chip. For this purpose, the bipolar transistors need not be of very high performance,
and could be obtained by adding extra process stages to a cmos process. The
alternative is to take a high density bipolar process and add cmos. The processor
could then be implemented with bipolar transistors and the on-chip memory in cMo0s.

Although at this stage it appears attractive, BicMos will undoubtedly bring a spate
of problems of its own, particularly as the noise characteristics of cmos and bipolar
circuits are very different. One of the attractions is that a Bicmos chip would
dissipate very much less power than a bipolar chip of similar size; the problems of
distributing power on the chip and removing the heat generated would therefore be
much less.

cMos, bipolar, and BicMOs technologies are all in a fluid state of development.
There are many options open and it is by no means clear which way development will
go. The preferences of research workers, the facilities available to them, and the
manner in which the semiconductor industry develops as a whole will all have
their influences.

Gallium arsenide

All the time, waiting in the wings, is gallium arsenide. Gallium arsenide is a
semiconducting material whose properties resemble silicon, except that it has a
better signal noise performance and is capable of switching speeds of up to five times
as fast. For some time there was difficulty in manufacturing the wafers to the
requisite standard of purity, but this now seems to have been largely overcome. Many
gallium arsenide chips are available on the market, including gate arrays containing
up to 16000 gates and implemented in a process which resembles cmos, or rather
NMOs, in that field effect transistors (FETS) are used.

The success, as a competitor to cmos, of processors implemented in a gallium
arsenide FET process depends entirely on the same density of integration becoming
possible. With the high switching speeds of gallium arsenide transistors and the very
limited power available, any necessity to send signals from one chip to another would
be fatal. It is essential that the entire processor should be accommodated on the same
chip.

Parallelism

For a long time people have been saying that when we run out of speed with
uniprocessors we will have to turn to parallelism for further advance. We have not
run out yet and, as I have indicated, we still have a long way to go. At the same time
it has turned out that getting speed by parallelism is easier said than done. Those
who thought that a computer with many slow processors would be an effective, lower
cost, competitor to one with a single fast processor have been proved wrong. The
problem lies in keeping the processors busy. There are major theoretical difficulties
in the way of automatic scheduling of the work so that this is achieved. Such
scheduling needs the kind of human 1ns1ght into a problem and its background that
goes far beyond what a compiler or operating system can achieve by statically

Phil. Trans. R. Soc. Lond. A (1991)

http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
3\

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Progress and research in the computer industry 177

analysing the code. It was, in my view, the failure to appreciate this fact in the early
1980s that caused over-optimistic predictions to be made.

I do not see machines with massively parallel architectures coming to play a major
role in general purpose computation. There are, however, areas in which programs
are of sufficient value and remain in use for a sufficiently long period for a large
investment of human labour in optimizing them for parallel computation to be
justified. High energy physics was one of the first of these; others continue to emerge
as time goes on.

As workstations, or rather the single-chip cmos processors within them, are
becoming more powerful, we are seeing the demise of the minicomputer as a distinct
category. A minicomputer is now becoming simply a workstation repackaged with a
more generous endowment of peripheral and communication equipment and possibly
with more memory. We have also seen the emergence of the file-server — a version of
the minicomputer or enhanced workstation dedicated to one particular function.

Mainframes are still with us and still contain the fastest processors in general use.
That, however, is no longer their principal feature. They stand out because they have
a very large processor 1/0 bandwidth, and come with very large disks and other
devices for storing large quantities of data. These features make today’s mainframes
valuable as bulk file-servers and database repositories.

The nature of software

Software products have an established place along with other industrial products
and the software engineers who produce them work alongside engineers responsible
for hardware. However, software products differ fundamentally from hardware
products. Software is entirely a creation of the human brain and its complexity is
manmade. It has an intellectual basis, not a basis in experimental science.

Thirty years ago, when people were first coming to grips with the problem of
producing software on an industrial scale, there were attempts to treat programmers
as technicians and put them to work under a supervisor who might be a system
analyst or a product manager. That was in the days of batch processing and
primitive programming languages. Now the advance of technology, including the
development of workstations and networks, has put major resources at the disposal
of a single person and has allowed the programmer to achieve his potential as a fully
autonomous professional. A modern programmer or software engineer can personally,
from his workstation, take full executive responsibility for all aspects of a project,
ranging from the strategic overview to programming details.

Not all programmers would call themselves software engineers nor, I think, is there
any specific style of programming that can be called software engineering. All
programmers who handle large projects face essentially the same problems. Like
professionals in other disciplines, programmers have their own tastes and adopt the
methods of working that they are most comfortable with. There are styles of
programming as there are styles of management, and the myth that there is a
particular style or discipline of programming to be preferred to all others is one that
I would reject.

Programming languages

About 1960 a small group of very able people began to turn their attention to
programming languages as an intellectual study. The result of their work was to

Phil. Trans. R. Soc. Lond. A (1991)

http://rsta.royalsocietypublishing.org/

,\
A
' . \
ya N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

178 M. V. Wilkes

create not only the language ALGOL 60, but also a wholly new branch of computer
studies. ALGOL 60 attracted wide interest at the theoretical level, and rapidly
became the subject of much discussion and controversy. A number of compilers were
successfully written. However, the language had various characteristics that
rendered it unattractive to practical computer users. Perhaps the most serious
limitation was that if a change were made to the body of an ALGOL program a
complete recompilation was necessary. This made it difficult to work with very large
programs. Moreover, the ALGOL group turned a deaf ear to any suggestions that
would improve run-time efficiency or improve the effectiveness of the type-checking
system. Although they would have denied it at the time, in retrospect they seem to
have been more interested in programs as mathematical constructs than as tools for
getting things done. ALGOL 60 was offered as something complete and final and the
group opposed any attempt to set up a body that would be responsible for its
evolution in the light of experience. By contrast, FORTRAN and COBOL were
driven by people who stressed the merits of standardization and upward
compatibility. They were preoccupied with short-term issues, and saw only the
immediate limitations of what the ALGOL group had done and not its potential.

The result was that those interested in programming split into two camps and
large-scale users did not profit, as they might have done, from the significant
advances that were made under the ALGOL banner. However, by the 1970s, the
widespread popularity of Pascal showed that there was a demand for a language
constructed on scientific principles, although Pascal inherited many of the problems
that I have indicated above.

There are welcome signs that a new phase is now beginning with the development
of object-oriented languages. The terminology is somewhat imprecise, but I take an
object to be a package containing both code and data; access to the data from
outside the object is possible only by invoking the code. Objects can be used in the
same way as procedures, but they are not subject to the hierarchical constraints
imposed on procedures in block-structured languages implemented on a single stack,
and they can be compiled separately. Moreover, it is possible to provide rigorous type
checking across object boundaries. Objects make the logical structuring of a program
much easier than it was with block structured languages. In fact the structured
programming movement may now be seen as a brave and only partly successful
attempt to convince people that logical structuring was possible in spite of a strict
adherence to a block structure.

Operating systems

For twenty-five years it has been apparent that sooner or later operating systems
would become machine-independent, as programming languages had already done.
It often happens that developments that are inevitable but long delayed come, at
last, in an unexpected way. When I first heard of Unix as an operating system
written for the PDP7/9 and later moved to the PDP11, and when in 1980 I saw it
being reimplemented on the VAX, I did not expect that it would be the vehicle by
which the world would first come to take to its heart an operating system that ran
on many different processors. Unix had one great advantage from the beginning,
namely, that it carried bundled with it an extensive library of useful programs. These
made it something more than a mere operating system, almost a programming

Phil. Trans. R. Soc. Lond. A (1991)

http://rsta.royalsocietypublishing.org/

,\
A

o \

ya N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

R
A\

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Progress and research in the computer industry 179

environment. Nevertheless, it was a system more suitable for use by software gurus
than by ordinary users. It appealed to people to whom the C language in which it was
written — or rather rewritten since the original version was in PDP7/9 assembly code
—also appealed. Unix and C promoted each other and each has helped the other’s
success.

Those responsible for the development of the early workstations were all Unix
enthusiasts, having had experience of it on minicomputers. It was a natural
consequence that Unix should become the standard operating system for work-
stations. This was perhaps the most important fact in causing Unix to emerge as the
first major machine-independent operating system.

One cannot help asking what would have happened if, instead of Unix, a long-
established operating system from one of the major vendors had been the first
operating system to emerge in machine-independent form, and had been offered with
mature marketing support and good documentation. That this did not happen is, no
doubt, partly due to the desire of vendors to protect their customer bases. However,
that argument would not have remained decisive if there had not also been a major
practical difficulty, or rather set of difficulties, that made the writing of a machine-
indpendent version appear as a daunting task. These difficulties arose because there
was no cleanly defined interface between these operating system and the layers of
software immediately above them. Because machine independence had not been an
objective, no attempt had been made to prevent the writers of software from making
assumptions about the lower levels of the operating system and the way it interfaced
with the hardware. This was true of software provided by third parties, as well as of
software provided by the hardware vendors. The key to machine independence is
having such an interface and preserving its integrity. Since enforcing an interface
always involves some loss in efficiency, or is thought to do so, there is no incentive
to do it unless some advantage —in the present case machine independence — is
thereby attained.

Unfortunately, it is not true that all Unix systems have exactly the same interface.
There are two main brands of Unix and variations within the brands. The situation
will remind an old timer of the one that existed with FORTRAN before the
introduction of the ANSI standard. Users complained bitterly because FORTRAN
programs that they had written for one version would not run on another. Even
when the standard had been introduced much further effort and self-discipline on the
part of the users was necessary to make its use universal.

It is anybody’s guess what the future of operating systems will be. I remarked
above that Unix is as much a user environment as an operating system, and any
challenger must be the same. It is posgible that the Unix program library will come
to be seen as more enduring than the operating system itself. X windows came at the
right time to provide a better user interface than the original command interface, but
X-windows on top of Unix is cumbersome. The Macintosh operating system showed,
when it appeared in the early 1980s, what can be achieved with modest resources if
the operating system is designed round a windowing system.

One day there must be a re-examination of what users’ needs really are. Do the
multitudinous features currently offered really help? What price do they entail in
memory and processor cycles? Could that memory and those processor cycles be
better used ? Would users be happier in a simple world ? Falling costs and the coming
of larger memories have delayed such an assessment, but I feel that it must come. In
the case of processor design a similar assessment has already taken place under the

Phil. Trans. R. Soc. Lond. A (1991)

http://rsta.royalsocietypublishing.org/

/\
/ \\
e\
L A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
3\

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

180 M. V. Wilkes

aegis of the r1sc movement. In that case, technical performance rather than users’
convenience and preferences was the issue. It was possible to show that the adding
of features one after the other could slow the processor down. It was no accident that
the RIsCc movement came at the moment when simulation was able to provide hard
facts. Quantitative assessment is not yet possible in the case of operating systems,
but there is force in the view that operating systems have become too large and too
complex and that this trend should be reversed.

Processor instruction set

During the whole period that the modern computer industry has been in existence,
the processor instruction set has played a central role in characterizing a range of
computers. It has been of importance to the prospective purchaser of a computer
system as well as to the computer manufacturer. Now suddenly, in the workstation
world, this is no longer the case. It is the Unix operating system and the variations
to be found between the various vendors’ offerings that loom large in the customer’s
calculations. I view this change as being a natural consequence of the adoption of an
operating system capable of being implemented on any processor. If the industry
moves, as I believe it will, slowly but surely towards the general adoption of machine-
independent operating systems, then the processor instruction set will be perma-
nently deposed from its former pre-eminent position.

To install Unix on a new processor, it is necessary first to equip the processor with
a C compiler. If speed of compilation is not an important consideration, compilers for
other languages may be designed so as to compile into C; they need pay little regard
to optimization since C compilers found on Unix workstations may be expected to
produce highly optimized code. Used in this way, C plays a role similar to that played
by assembly languages.

There still remain some features of the processor design that show through the
operating system. Among these are word length, floating-point format, and the
ordering of bytes in a word. Lack of uniformity in regard to these features has been
a source of inconvenience for some time and it will remain so until standards emerge
and become adopted generally. This has already happened in the case of word length
and we see it happening in the case of floating-point formats as a result of the
introduction of the IEEE standard.

Progress in system software

Although much has happened in programming languages over a period of thirty
years, progress from year to year is hard to discern. Even over five years there is not
very much to see. The same is true of operating systems which started with the
FORTRAN Monitor System and went on to time sharing and transaction processing.

Advances are brought about in the first place by the sustained efforts of unusually
able people mostly, but not only, working in universities. They are made possible in
part by the steadily increasing power of computer hardware, and in part by
theoretical advances in syntax analysis, compiler design, synchronisation primitives,
etc. They are introduced into industrial practice by students fresh from their first
degrees and by established software engineers who have kept themselves up to date

Phil. Trans. R. Soc. Lond. A (1991)

http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
' \

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Progress and research in the computer industry 181

by attendance at conferences and tutorial courses. There can be no industry in which
the continual retraining of engineers in so widespread or in which it is so necessary.

Industrial research

Industrial research in the modern sense may be said to have its origins in the great
interwar industrial research laboratories, especially the GEC Research Laboratories
(now known as the Hirst Research Centre) at Wembley that Clifford Paterson made
famous and the Bell Telephone Laboratories in New Jersey. The purpose of these
laboratories was the application of the experimental scientific method to industrial
problems. They differed greatly from the inventors’ workshops of an earlier
generation, particularly in regard to the scientific qualifications of the people they
employed. An important outcome of their work was the acquisition of patents which
could either be exploited directly or licenced to other companies. Money spent on
research was seen as being a profitable investment in the purely financial sense.

My first visit to the GEC Wembley Research Laboratories was in the 1930s when
I was still a student. It was at a time when the increase in motor traffic had led to
a need for better road lighting and, in particular, for lighting fittings that would
produce a uniform level of illumination on the road. This required improved lens
design, and we were shown an experimental set-up in which the intensity of the light
emitted from a fitting could be measured as a function of angle. Photocells were then
high technology and measurement was regarded as a hallmark of the scientific
method.

The model of industrial research just described is still valid in many industries, but
must be applied with caution in the computer industry. As the computer industry
has become dominated by software, hardware research has receded into the
background. Some work continues in certain areas such as magnetic recording and
integrated circuit packaging technology. Little of the basic physics research needed
for the development of integrated circuits is now done in the computer industry.
Software research makes no demands for laboratory facilities of the traditional kind
or for people with qualifications in the experimental sciences. It is necessary to have
people with original minds and an interest in industrial innovation, but the skills
they need are essentially the same as those needed by software engineers or computer
scientists generally.

Apart from computer applications, in which I include circuit simulators and other
computer design tools, software research in the computer community centres on:
basic programming methodology; programming languages; display software and
software associated with workstations; system software, in particular operating
systems and programming environments; file servers and databases.

The computer industry sees itself as advancing as a whole, with industrial research
laboratories and university laboratories both contributing to innovation. There is
keen competition between companies, especially in the United States, to recruit the
more creative computer science and engineering graduates and to provide them with
an environment in which they can develop their talents for the benefit of the
company. They are encouraged to take an interest in long-range topics in cooperation
with colleagues in universities and other companies. While most such work has
limited relevance to the business of a particular company, it is nevertheless
important in providing a vehicle by which the more productive members of the

Phil. Trans. R. Soc. Lond. A (1991)

http://rsta.royalsocietypublishing.org/

A
\

/,//’ \\
J
{ A

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

182 M. V. Wilkes

research staff may establish links with their opposite numbers in other companies
and in universities. Without such links, a research organization rapidly becomes
inward looking, and unable to fulfil one of its most important roles, namely that of
alerting the company at an early stage to incipient trends and developments that
may impact its product strategy.

Product designers charged with the short-term evolution of product lines also
establish external links, but these tend to be with a different sector of the computer
community. Product designers need to keep themselves fully aware of what is
happening to their own particular markets, and be prepared to meet competition as
they see it developing. Their view of the industry is very different from the longer-
term view seen by research engineers, but both are valid and one complements the
other.

Transfer of technology from outside a company to within it is an important
function of an industrial research organization. Many industrial research projects are
aimed, not at doing innovative research, but at importing and acclimatizing
technology developed elsewhere. This function is just as important as that of doing
innovative research and is likely to absorb the greater part of the effort of an
industrial research organization.

A characteristic of the industry is that advances in software that directly affect a
user must, if they are to be successful, be adopted by the industry generally.
Research is conducted with a degree of openness that it would be surprising to find
in other areas. This is possible in part because the transfer of software technology is
not easily brought about even to one’s friends. They as well as competitors need time
and experience to become comfortable with new ideas. The research ultimately
benefits the industry as a whole. In the short term, the company that has invested
in it, and believes in it, can hope to profit first. If a company attempts to exploit the
result of the research in an exclusive manner, by being unwilling to release the
relevant software, or by means of a software patent (as is now possible in the United
States), it runs the risk of losing this advantage. Anyone who has observed the
computer industry over a period of time will be able to point to examples of this
happening.

Cooperative research

The current fashion among public bodies that sponsor research in Kuropean
industry is to put much emphasis on collaboration between independent organiz-
ations. I suspect that this had its origin in a desire to promote the European spirit
and to rectify what was rightly perceived to be an uneven distribution of
technological expertise across Europe.

No doubt these are important objectives, but I have some reservations about the
effect of collaboration in innovative research. Collaboration is useful where it enables
resources to be pooled and, in some sciences such as the Earth sciences, international
cooperation is essential if certain kinds of research are to be undertaken at all.
However, there is no merit in cooperation for its own sake. Forced cooperation can
blunt the sharp edge of innovation. At the highest level, research is aimed at
changing people’s mind sets. You do not do this by collaborating with them. By all
means have them to work with you as disciples if they want to come and you can
accommodate them.

Phil. Trans. R. Soc. Lond. A (1991)

http://rsta.royalsocietypublishing.org/

,\
A

o \

ya N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

R
A\

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Progress and research in the computer industry 183

Before engaging in a collaborative project, a company should consider carefully
what its objectives are. If the transfer of technology or the promotion of good
relations with other governmental or non-governmental organizations is important,
then collaboration may be the correct course. But if such objectives, which are not
themselves research objectives, are allowed to influence a genuine research project,
the quality of the research is likely to be degraded. Unfortunately, collaboration is
something that can be easily measured ; the ultimate absurdity is reached if the size
of the travel budget is used as a metric for assessing the health of a research
programme.

In the United States, companies were, until recently, inhibited from entering into
cooperative research agreements by fear of anti-trust proceedings. The situation was
materially changed by the passage of two Acts of Congress, namely the National
Jooperative Research Act of 1984 and the Technology Transfer Act of 1986. As a
result, cooperative research organizations are now to be found in both the computer
industry and the semiconductor industries. These organizations have been created
by the companies themselves without government assistance, but cooperation by US
Government laboratories is allowed under the second of the two acts mentioned
above. In the computer industry, the first joint organization to be set up had as its
object the pooling of resources to support long-term research. More recently, the
Open Software Foundation has been established, and through it the participating
companies hope to create what will become a common software basis for future
products in the industry as a whole. This is a recognition of the fact, noted earlier,
that software advances must be adopted by the industry generally if they are to
achieve their full impact.

The central problem with all collaborative research undertakings is that of
ensuring that the work being done remains relevant as the future unfolds. This is
especially the case with innovative research. Flexibility is of the essence in research,
and much money can be wasted if a research programme is set in contractual
concrete at the beginning and pursued unchanged through thick and thin.
Unfortunately, when major changes to a project become necessary, it may be
difficult for the parties to agree on what they should be, and in the extreme case, even
more difficult for them to agree on cancellation.

Long-term stability

When I was a young consultant employed by Ferranti Limited, Sir Vincent de
Ferranti used to compare a company with a ship; the ship, he would say, must stay
afloat at all times. He looked forward to being able to hand his own company over
to his sons as he himself had received it from his own father. It is this sort of security
and stability that is needed for research to flourish in a company. To achieve it a
company must build up fat but, under modern conditions, if it does so it soon
becomes the target for a take-over bid.

I am aware that these comments about the long-term stability of a company have
relevance far beyond the welfare of industrial research organizations and those who
work in them. The top management of operating companies are often blamed for
taking a short-term view, but they are the helpless victims of the financial
environment in which they live. Perhaps the influence of the business schools is not
entirely beneficial. The managements certainly suffer from the fact that the directors
of holding companies appear to be more interested in finance than in understanding

Phil. Trans. R. Soc. Lond. A (1991)

http://rsta.royalsocietypublishing.org/

& ENGINEERING

MATHEMATICAL,
SCIENCES

PHYSICAL

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

& ENGINEERING

MATHEMATICAL,
SCIENCES

PHYSICAL

THE ROYAL
OF SOCIETY A

PHILOSOPHICAL
TRANSACTIONS

Downloaded from rsta.royalsocietypublishing.org

184 M. V. Wilkes

the working of any particular industry. These, however, are issues on which I have
little qualification to speak, nor on this occasion have I the charter to do so.

I thank the following who have provided me with information or otherwise helped me with the
writing of this lecture: J. Dion, J. L. Hennessy, R. M. Needham, P. Robinson, R. W. Taylor.

Typescript received 31 October 1990 ; lecture delivered 15 November 1990

Phil. Trans. R. Soc. Lond. A (1991)

http://rsta.royalsocietypublishing.org/

